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Taxonomy of Generative Models

_ What we’ve learned:
What we’ve learned: Deep Generative Models  PPCA
e MMs, HMMs, LDSs, RNNs ‘ / e VAE
Autc:;i%reelzslve FI::‘S::ISS ed @ variable\ Energy-based
(e.g., PixeICNN)_/ (e.g., RealNVP) models models

Implicit models Prescribed models
(e.g., GANSs) (e.g., VAEs)

What we study now:
e "Selective" State Space Models




Selective State Space Models (Selective SSMs)

 State Space Models have overloaded meanings;
* |In particular, SSMs can mean linear dynamical systems

e LDSs (without noise)

Zt = AZt—l + th
v = Cz;

* RNNs

zt = g(Azi—1 + Bxy)
ye = f(Cz)

* Selective SSMs
Zy = AtZt—l + tht
Ye = Ciz¢
* A¢, By, Cp depend on input x;
* e.g., Ay = s(x;) for some learnable s
* time-varying

 Similar, if not identical, to gating



Why Selective SSMs?

 LDSs

* simple, theoretically grounded
* not expressive enough

* RNNs

* inefficient (can’t be trained in parallel, can’t even be efficiently unroll for 1K+ tokens)
 gradient exploding & gradient vanishing

 Selective SSMs
* efficient parallel algorithms
* increased expressivity by incorporating gating or selection mechanism
* avoid gradient exploding by careful parametrization



Problem Setup

Zt = AtZt—l ~+ tht

Sa, Sp, Sc are learnable

ye = Crzy * An example (yet practical) choice:
* s4(x;) = diag(sigmoid(linear(x;))
Ay = s4(x¢), By = sp(x¢), Ce = s¢c(x¢)

1
1+exp(—¢&) € (0'1)

* prevents gradient explosion
* Assumption: A, B, C; are diagonal * crucial for stability

* |lead to scalar dynamics
* crucial for efficiency

e sigmoid(§) =

* diag(-) makes A; diagonal

* Goal: given initial state zy and {x;, A¢, By, C¢}¢=1 .7, cOMpute y4, ..., yr efficiently
* this amounts to computing the forward pass of a SSM layer
* during training, sequentially computing y4, ..., YT won’t be scalable for large T



Scalar Dynamics

* We now consider a case where everything is a scalar

Zt — atZt_l + btxt
YVt = CtZt

* Goal: given initial state zy and {x;, a;, by, ¢t }¢=1 .7, cOmpute y4, ..., yr efficiently
* sequentially computing y4, ..., yr won’t be scalable for large T

e Observation:

* We only need to think about computing z4, ..., zy with as much parallelism as possible
e given all ¢;’s and z;’s, we can compute y;’s in parallel

 We can compute d; := b;x, in parallel, so we
t tXt

Zy = Al ~+ dt



Scalar Dynamics

Zt — atZt_l + dt

 Simplified Case 1: if d; = 0, then we have
Zt = Q¢Q¢—q > A1 29
* we just need to compute a4, a a5, ...,a,a, -- ar| (cumulative product)

* Simplified Case 2: if a; = 1, then we have
Zt :Z0+d1+°"+dt
* we just need to compute |[dq,d; + d5 ...,dy +dy + -+ + d] (cumulative sum)

* In general, we can write the dynamics z; = atzt 1 +d; as

=15 7]

* We just need to compute the cumulative product of 2X2 matrices [cg Cit]



Assoclative Operator

=15 ]

* Matrix product, scalar product, scalar addition are all associative operators @

a@PBbPc=@PDb)DPc=a® (bDc)
* Since
a; dt] [aT dT] _[ata; aid; + dt]
0O 1/L0 1 0 1
we can define the associative operator @ this 2x2 matrix product as
(a¢, d;) D (a, d;) = (aca,, ardy + dy)
* Why we need this notation:
* For any associative operator @, parallel algorithms exist to compute

[8;11 51 @ 52 ""El @ 52 @ @ gT]



Hillis/Steele Associative Scan Algorithm

[$1,$1 D2, $1 D 2 D D 7l
step =1, p[i] = $i41

while step < T: # assume T is some power of 2
foriin range(step, T): # can run in parallel with p processors
p[i] — p[i o Step] D p[i] sequential work [while loop]: log(T)
step *=2 total work: % -log(T)

Example (T=8): (the symbol & is omitted in interest of space)

| ter | step | pl0] | pll | p2] | pl3l | pl4 | pisl | pl6] | pl7l
& 6 £ 7 2 2 2 2

0 1

1 2 $1 $152 §2$3 §354 $4Ss $556 $657 §7¢8
2 4 $1 §152 $16283 1628384 263845 3648586 $4S586S7 5668788
3 8 $1 $152 $16283 1628384 $16283648s  $162¢3 16283 $1628384

$aSsS6  $4$58687  $55657€8



Hillis/Steele Associative Scan Algorithm

[$1,)$1 D 2,81 D& D - D Sl
step =1, pli] = $i41
while step < T: # assume T is some power of 2
foriin range(step, T): # can run in parallel
pli] = pli — step] @ pli]
step *=2



Forward Pass of Selective SSMs (Vector Case)

Sa, Sp, Sc are learnable
Zy = AtZt—l + tht
ye = Crzy * An example (yet practical) choice:
* s4(x;) = diag(sigmoid(linear(x;))
Ay = 5p(x¢), By = sp(xt), C¢ = sc(xe)

1
1+exp(—¢&) € (0'1)

* prevents gradient explosion
* crucial for stability

e sigmoid(§) =

* diag(-) makes A; diagonal
* Given initial state zg and {x;};=1 T
1. compute the diagonal matrices A, B¢, C¢ (for all t in parallel):

© Ay = 54(x¢), By = sp(x¢), Cp = sc(xe)
2. compute all vector outputs y4, ..., yr via associative scan algorithms



Pract

cal Use of Selective SSMs

(poF] Mamba: Linear-time sequence modeling with selective state spaces
AGu, T Dao

arXiv preprint arXiv:2312.00752, 2023 - 3dvar.com

Abstract

Foundation models, now powering most of the exciting applications in deep learning, are
almost universally based on the Transformer architecture and its core attention module.
Many subquadratic-time architectures such as linear attention, gated convolution and
recurrent models, and structured state space models (SSMs) have been developed to
address Transformers’ computational inefficiency on long sequences, but they have not
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* Applicable to all RNN applications



