
Fall Semester 2025

René Vidal
Director of the Center for Innovation in Data Engineering and Science (IDEAS),

Rachleff University Professor, University of Pennsylvania
Amazon Scholar & Chief Scientist at NORCE

Deep Generative Models:
State Space Models, Selective State

Space Models & MAMBA

Taxonomy of Generative Models
What we’ve learned:
• PPCA
• VAE

What we’ve learned:
• MMs, HMMs, LDSs, RNNs

What we study now:
• "Selective" State Space Models

• State Space Models have overloaded meanings;
• In particular, SSMs can mean linear dynamical systems

Selective State Space Models (Selective SSMs)

• LDSs (without noise)

• RNNs

• Selec=ve SSMs

• 𝐴!, 𝐵!, 𝐶! depend on input 𝑥!
• e.g., 𝐴! = 𝑠(𝑥!) for some learnable 𝑠

• !me-varying

• Similar, if not idenLcal, to gaLng

𝑧! = 𝐴𝑧!"# + 𝐵𝑥!
𝑦! = 𝐶𝑧!

𝑧! = 𝑔 𝐴𝑧!"# + 𝐵𝑥!
𝑦! = 𝑓(𝐶𝑧!)

𝑧! = 𝐴!𝑧!"# + 𝐵!𝑥!
𝑦! = 𝐶!𝑧!

• LDSs
• simple, theoretically grounded
• not expressive enough

• RNNs
• inefficient (can’t be trained in parallel, can’t even be efficiently unroll for 1K+ tokens)
• gradient exploding & gradient vanishing

• Selective SSMs
• efficient parallel algorithms
• increased expressivity by incorporating gating or selection mechanism
• avoid gradient exploding by careful parametrization

Why Selective SSMs?

• Assumption: 𝐴' , 𝐵' , 𝐶' are diagonal
• lead to scalar dynamics
• crucial for efficiency

• Goal: given initial state 𝑧(and 𝑥' , 𝐴' , 𝐵' , 𝐶' ')*,…,-, compute 𝑦*, … , 𝑦- efficiently
• this amounts to computing the forward pass of a SSM layer
• during training, sequentially computing 𝑦#, … , 𝑦$ won’t be scalable for large 𝑇

Problem Setup
𝑧! = 𝐴!𝑧!"# + 𝐵!𝑥!

𝑦! = 𝐶!𝑧!

𝐴! = 𝑠% 𝑥! , 𝐵! = 𝑠& 𝑥! , 𝐶! = 𝑠'(𝑥!)

𝑠%, 𝑠&, 𝑠' are learnable

• An example (yet practical) choice:
• 𝑠%(𝑥!) = diag(sigmoid(linear 𝑥!)

• sigmoid 𝜉 = #
#()*+("-)

∈ (0,1)
• prevents gradient explosion
• crucial for stability

• diag(⋅) makes 𝐴! diagonal

• We now consider a case where everything is a scalar

• Goal: given initial state 𝑧(and 𝑥' , 𝑎' , 𝑏' , 𝑐' ')*,…,-, compute 𝑦*, … , 𝑦- efficiently
• sequentially computing 𝑦#, … , 𝑦$ won’t be scalable for large 𝑇

• Observation:
• We only need to think about computing 𝑧#, … , 𝑧$ with as much parallelism as possible

• given all 𝑐!’s and 𝑧!’s, we can compute 𝑦!’s in parallel
• We can compute 𝑑! ≔ 𝑏!𝑥! in parallel, so we

Scalar Dynamics

𝑧! = 𝑎!𝑧!"# + 𝑏!𝑥!
𝑦! = 𝑐!𝑧!

𝑧! = 𝑎!𝑧!"# + 𝑑!

• Simplified Case 1: if 𝑑' = 0, then we have
𝑧' = 𝑎'𝑎'1*⋯𝑎*𝑧(

• we just need to compute [𝑎#, 𝑎#𝑎/… , 𝑎#𝑎/⋯𝑎$] (cumulative product)

• Simplified Case 2: if 𝑎' = 1, then we have
𝑧' = 𝑧(+ 𝑑* +⋯+ 𝑑'

• we just need to compute [𝑑#, 𝑑# + 𝑑/… , 𝑑# + 𝑑/ +⋯+ 𝑑$] (cumulative sum)

• In general, we can write the dynamics 𝑧' = 𝑎'𝑧'1* + 𝑑' as
𝑧'
1 = 𝑎' 𝑑'

0 1
𝑧'1*
1

• We just need to compute the cumulative product of 2×2 matrices 𝑎! 𝑑!
0 1

Scalar Dynamics
𝑧! = 𝑎!𝑧!"# + 𝑑!

𝑧'
1 = 𝑎' 𝑑'

0 1
𝑧'1*
1

• Matrix product, scalar product, scalar addition are all associative operators ⊕

𝑎⊕ 𝑏⊕ 𝑐 = 𝑎 ⊕ 𝑏 ⊕ 𝑐 = 𝑎 ⊕ (𝑏 ⊕ 𝑐)
• Since

𝑎' 𝑑'
0 1

𝑎2 𝑑2
0 1 = 𝑎'𝑎2 𝑎'𝑑2 + 𝑑'

0 1
 we can define the associative operator ⊕ this 2x2 matrix product as

𝑎' , 𝑑' ⊕ 𝑎2 , 𝑑2 = (𝑎'𝑎2 , 𝑎'𝑑2 + 𝑑')
• Why we need this notation:
• For any associative operator ⊕, parallel algorithms exist to compute
 [𝜉#, 𝜉#⊕ 𝜉/… , 𝜉#⊕ 𝜉/⊕⋯⊕ 𝜉$]

Associative Operator

[𝜉*, 𝜉*⊕ 𝜉3… , 𝜉*⊕ 𝜉3⊕⋯⊕ 𝜉-]
step = 1, 𝑝[𝑖] = 𝜉45*
while step < T: # assume T is some power of 2
 for i in range(step, T): # can run in parallel with 𝑝 processors
 𝑝[𝑖] = 	𝑝[𝑖 − 𝑠𝑡𝑒𝑝] ⊕ 𝑝[𝑖]
 step *= 2
Example (T=8): (the symbol ⊕ is omitted in interest of space)

Hillis/Steele Associative Scan Algorithm

Iter Step 𝑝[0] 𝑝[1] 𝑝[2] 𝑝[3] 𝑝[4] 𝑝[5] 𝑝[6] 𝑝[7]
0 1 𝜉! 𝜉" 𝜉# 𝜉$ 𝜉% 𝜉& 𝜉' 𝜉(
1 2 𝜉! 𝜉!𝜉" 𝜉"𝜉# 𝜉#𝜉$ 𝜉$𝜉% 𝜉%𝜉& 𝜉&𝜉' 𝜉'𝜉(
2 4 𝜉! 𝜉!𝜉" 𝜉!𝜉"𝜉# 𝜉!𝜉"𝜉#𝜉$ 𝜉"𝜉#𝜉$𝜉% 𝜉#𝜉$𝜉%𝜉& 𝜉$𝜉%𝜉&𝜉' 𝜉%𝜉&𝜉'𝜉(
3 8 𝜉! 𝜉!𝜉" 𝜉!𝜉"𝜉# 𝜉!𝜉"𝜉#𝜉$ 𝜉!𝜉"𝜉#𝜉$𝜉% 𝜉!𝜉"𝜉#

𝜉$𝜉%𝜉&
𝜉!𝜉"𝜉#
𝜉$𝜉%𝜉&𝜉'

𝜉!𝜉"𝜉#𝜉$
𝜉%𝜉&𝜉'𝜉(

sequenJal work [while loop]: log(𝑇)
total work: "

#
⋅ log(𝑇)

[𝜉*, 𝜉*⊕ 𝜉3… , 𝜉*⊕ 𝜉3⊕⋯⊕ 𝜉-]
step = 1, 𝑝[𝑖] = 𝜉45*
while step < T: # assume T is some power of 2
 for i in range(step, T): # can run in parallel
 𝑝[𝑖] = 	𝑝[𝑖 − 𝑠𝑡𝑒𝑝] ⊕ 𝑝[𝑖]
 step *= 2

Hillis/Steele Associative Scan Algorithm

• Given initial state 𝑧(and 𝑥' ')*,…,-
1. compute the diagonal matrices 𝐴!, 𝐵!, 𝐶! (for all 𝑡 in parallel):

• 𝐴! = 𝑠$ 𝑥! , 𝐵! = 𝑠% 𝑥! , 𝐶! = 𝑠&(𝑥!)
2. compute all vector outputs 𝑦#, … , 𝑦$ via associative scan algorithms

Forward Pass of Selective SSMs (Vector Case)

𝑧! = 𝐴!𝑧!"# + 𝐵!𝑥!
𝑦! = 𝐶!𝑧!

𝐴! = 𝑠% 𝑥! , 𝐵! = 𝑠& 𝑥! , 𝐶! = 𝑠'(𝑥!)

𝑠%, 𝑠&, 𝑠' are learnable

• An example (yet practical) choice:
• 𝑠%(𝑥!) = diag(sigmoid(linear 𝑥!)

• sigmoid 𝜉 = #
#()*+("-)

∈ (0,1)
• prevents gradient explosion
• crucial for stability

• diag(⋅) makes 𝐴! diagonal

• Applicable to all RNN applications

PracFcal Use of SelecFve SSMs

